"Sustainable Wastewater Management in River Management Plans in Baltic Sea Region" Gdynia 19 – 20 November 2009

Why sustainable sanitation in Baltic Sea Region?

Gunnar Noren CCB Secr. General

Planning for sustainable sanitation © WRS Uppsala AB - www.wrs.se

n Ba 1) JVIR

What is CCB?

Coalition Clean Baltic

CCB – Joining forces for the Baltic

- CCB is a network of Environmental NGOs, working in the Baltic Sea catchment area.
- **CCB** was established in 1990
- CCB is environmental Citizens
 Organisations (ECO) in cooperation
- CCB has 25 member organizations
- **CCB** has members and cooperation partners in: Belarus, Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, Sweden, Ukraine

Planning for sustainable sanitation - CCB seminar on sustainable sanitation

© WRS Uppsala AB - www.wrs.se

Coalition Clean Baltic

is a network of environmental nongovernmental organisations (NGOs) working in the Baltic Sea catchment area:

- For protection of the Baltic Sea Environment!

ar on sustainable sanitation

WRS

Priority Areas with sub-

areas

1. Promotion of good ecological water status

- Sustainable wastewater management
- Sustainable River Basin Management
- Promotion of water protection measures in Agriculture

2. Prevention of installations and transports harmful to the Baltic Sea environment and coastal areas

- Harmful installations and transports
- Promotion of sustainable development in coastal zones
- Harmful Hydro-electric power plants

3. Development of sustainable Baltic Sea fisheries

- Protection of the naturally spawning Baltic Salmon
- Promotion of Baltic Sea sustainable fishing practices
 WRS

8

Why do CCB promote Sustainable Sanitation?

- Contribute to solution of the Baltic eutrophication problem
- Small- and medium-sized municipalities and single family-homes give substantial contribution to Baltic eutrophication
- protection of the environment (lakes, streams and the sea)!

-conservation of natural resources (nutrients and water)!

- For Public Health promotion!

Also: Sustainable Sanitation can <u>save money</u> and <u>make system more robust</u>

CCB member of GWP CEE

-supported the initiative - book production "Sustainable Sanitation in CEE"

Illustration: Peter Ridderstolpe, WRS

WRS Water Revival Systems

Planning for sustainable sanitation-Open Wastewater Planning

Gunnar Norén Coalition Clean Baltic

Open Wastewater Planning

- Focus on functions
- Involve relevant stakeholders
- Consider the whole system
- Consider and compare several technological options

WRS Water Revival Systems

Focus on functions

Illustration: Peter Ridderstolpe, WRS

Private goals: Safe, comfortable, and affordable sanitation for the users.

Public goals: A. Protection of Public Health B. Recycling of nutrients (and water and nutrients) C. Protection of water recipients

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

WRS

Open dialogue with stakeholders on requirements and means

Consider the whole system!

Consider the whole system!

Consider the whole system!

19

The planning process - step by step

SWEDENVIR

 $Planning \ for \ sustainable \ sanitation \ - \ CCB \ seminar \ on \ sustainable \ sanitation \ \odot \ WRS \ Uppsala \ AB \ - \ www.wrs.se$

Step 1: The case "Vadsbro" southern Sweden...

- Old and obsolete plant (and collecting system)
- High consumption of electricity and chemicals
- Weak and uncertain treatment result
- > Develop existing system or constructing new?
- > Targets (ambitions) vs. reasonable costs?

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

WRS

Stakeholders

- Residents/users
- Planners & decision makers
- Schools & commercial operators
- Land owners
- Contractors
- Farmers
- Community-based organisations
- Others: neighbours, etc.

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

WRS

Step 2: Local conditions

Local conditions in Vadsbro:

Vadsbro Rural area, farmland, forest, nice lake Local water well middle of village Existing pipe system, two pump stations KATRINEBOR Vadsbrosjóň SWEDENVIR

© WRS Uppsala AB - www.wrs.se

NUMBER OF PERSONS

-Designed for: 145 -Today: 125

WASTEWATER FLOW

-45 m³/day average (320 l/person/day)

NUTRIENT AND ORGANIC MATTER FLOWS

Calculations from Swedish standard figures:

-Phosphorus: 110 kg/year -Nitrogen: 700 kg/year -BOD₇: 2 450 kg/year

Illustration: Peter Ridderstolpe, WRS

Planning for sustainable sanitation - CCB seminar on sustainable sanitation

© WRS Uppsala AB - www.wrs.se

Step 3: Terms of Requirement (ToR) for Vadsbro

Primary functions	Practical considerations
 Protection of public health Avoidance of sanitary nuisances, e.g. bad odour. The effluent should either be of bathing water quality or excluded from direct exposure to humans until it has achieved bathing water quality. Recycling Phosphorous: >75% recycled Other resources valuable for agriculture 	 Economy Investment should not exceed USD 4000 per household. Operation and maintenance should not exceed USD 250 per year per household. Socio-culture New systems may require new responsibility arrangements between the municipality and farmers. Nutrient recycling should be adapted to the possibilities in the area.
 Protection of water recipients Phosphorous: >90% reduction. At most 0.1 kg/pe as annual discharge and <0.1 mg/l. Nitrogen: >50% reduction. At most 2.5 kg/pe as annual discharge. Discharged in the form of nitrate. BOD: >95% reduction. 	 The system should be adapted to present and future land use in the area. <i>Technical function</i> A proven, robust system that gives few surprises. Use of existing infrastructure when feasible. Discharge monitoring may be more challenging for new systems and could require new methods.

Step 4: Analysis of possible solutions

Illustration: Peter Ridderstolpe, WRS

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

WRS

Assessing measures at the point of origin...

To agriculture Air Water Groundwater

Assessing measures at the "end of pipe" ...

"Six different options	1. Forest irrigation
fulfil the "terms of	2. Precipitation pond
requirement"!	 Trickling filter and biofilter ditch

- 4. Wetland/Agriculture rotation system
- 5. Open sandfilter
- 6. Compact treatment plant

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

1. Forest irrigation...

Vadsbro case, continued...

2. Precipitation with slaked lime, sedimentation in ponds

3. (Pre precipitation)- Trickling filter and biofilter ditch

5. Open sand filter

6. Compact treatment plant and biofilter ditch

WRS Water Revival Systems

Step 5: Final evaluation of the alternatives

	Alt. 1	Alt. 2	Alt. 3	Alt 4.	Alt. 5	Alt 6
	Inigation	<u>Ca-precip</u>	Bioditch F	Rotation syst	Sandfilter	Treat. <u>plant</u>
Economy	+++	+++	++	++	-	
Reduction	+++	++	++	++	++	+
Potentials for recycling	++?	++	++	+++	++	++
Hygienic <u>safe</u>	-	++	++	-	++	-
Local adaptation		+	++ ,	++?	+	++
Responsibility / <u>Control</u>	-	++ \	#A	-	+++	+++
Conclusion	Very efficient and cheap out hygienic hazards Landscape impact	Efficient Robust service demanding	Efficient Cheap Flexible Robust	Not proved but very interesting	Efficient but quite expensive	Not cost efficient Simple planning

SWEDENV(R) Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

WRS

Step 6. Implementation

Case 2: Improved sanitation in rural Bulgaria

- Low income , high unemployment
- Household farming
- Carts bedrock, shallow soils, sensitive groundwater
- Private wells
- Simple pit latrines

Terms of Requirement (ToR) for Case 2: Bulgaria

Primary functions	Practical considerations
 Protection of public health All parts of the system and the subsequent handling of products must achieve a high levelof hygiene and disease protection, including: High hygienic standard within the toilet, the washing area, and with regards to greywater/wastewater effluent, etc. Excreta must be stored/disposed of without risk of seepage of pathogens to the groundwater It must be possible to manage collection and disposal of waste products in a hygienically safe manner Recycling Virtually all nutrients from the sanitary system (urine as well as faeces) should be recycled to productive land, so as tominimise nitrogen losses within the system,pollution, etc. 	 Economy Investment costs should be reasonable Households should be able to carry out operation and maintenance in kind Socio-culture Responsibilities of households and authorities must be clear The toilet should be inside the house The system must be easy to use, including for children, women, and the elderly Technical function Operation and maintenance should be easily performed by the users themselves It must be possible to evaluate the system performance
 Protection of water recipients Excreta must not be stored or disposed of so that there is a risk of leachate of nutrients into the groundwater Surface waters (ditches, ponds, rivers, lakes) should be protected from nutrients and organic 	
matter originating from toilets and greywater/wastewater	т.

41

Alternatives

- Existing pit latrines improved by ventilation and continued grey water handling by throwing buckets in the yard
- Dry urine diversion and on-site greywater management in a constructed soil filter
- On-site water borne system with treatment in soil filters

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

Open wastewater planning - conclusions

- Change preconceived thinking and create real understanding for the reasons for treatment
- Force "decision makers" to consider the whole system
- Create understanding for the software part of the system (user aspects, institutional aspects, economical aspect etc.)
- Promote public participation (democratic planning)
- Promote locally adapted systems
- Promote development of new techniques

Draw back: More effort in planning must be allocated than normal SWEDENVIRO Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

Remember:

- ⇒ Think about the user! Involve stakeholders!
- ⇒ Keep all goals/targets in mind!
- \Rightarrow Consider the whole system!
- ⇒ Practical aspects often determine long-term function

Thank You!

Planning for sustainable sanitation - CCB seminar on sustainable sanitation © WRS Uppsala AB - www.wrs.se

WRS